VANDERBILT UNIVERSITY

MATH 2610 - ORDINARY DIFFERENTIAL EQUATIONS
 Examples of section 2.4

Question 1. Solve the following IVP:

$$
\left\{\begin{array}{l}
\left(4 x y+6 y^{2}\right) y^{\prime}+3 x^{2}+2 y^{2}=0 \\
y(0)=2
\end{array}\right.
$$

SOLUTION. Write the equation as

$$
\left(4 x y+6 y^{2}\right) d y+\left(3 x^{2}+2 y^{2}\right) d x=0
$$

and let $M(x, y)=3 x^{2}+2 y^{2}$, and $N(x, y)=4 x y+6 y^{2}$. Computing we find $\frac{\partial M}{\partial y}=4 y$ and $\frac{\partial N}{\partial x}=4 y$, and therefore this is an exact equation since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. Put

$$
F(x, y)=\int M(x, y) d x=\int\left(3 x^{2}+2 y^{2}\right) d x=x^{3}+2 x y^{2}+g(y)
$$

Then

$$
\frac{\partial F}{\partial y}=4 x y+g^{\prime}=N=4 x y+6 y^{2} \Rightarrow g^{\prime}(y)=6 y^{2} .
$$

Integrating, $g(y)=2 y^{3}$ (we do not need to add a constant here). Hence the general solution is

$$
F(x, y)=x^{3}+2 x y^{2}+2 y^{3}=C .
$$

Using $y(0)=2$ we find $C=16$, so the solution to the IVP is

$$
x^{3}+2 x y^{2}+2 y^{3}-16=0 .
$$

Notice that this is an implicit solution.

