## VANDERBILT UNIVERSITY MATH 196 - PRACTICE TEST 2

Question 1. Determine whether or not the given vectors form a basis of $\mathbb{R}^{n}$.
(a) $v_{1}=(3,-1,2), v_{2}=(6,-2,4), v_{3}=(5,3,-1)$.
(b) $v_{2}=(3,-7,5,2), v_{2}=(1,-1,3,4), v_{3}=(7,11,3,13)$.
(c) $v_{3}=(1,0,0,0), v_{2}=(0,3,0,0), v_{3}=(0,0,7,6), v_{4}=(0,0,4,5)$.

Question 2. Consider the set $W$ of all vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ such that $x_{1}=x_{2}+x_{3}+x_{4}$. Is $W$ a sub-space of $\mathbb{R}^{4}$ ? In case yes, find a basis for $W$.

Question 3. Find a basis for the solution space of the linear system

$$
\left\{\begin{aligned}
x_{1}+3 x_{2} & -4 x_{3}-8 x_{4}+6 x_{5}=0 \\
x_{1} & +2 x_{3}+x_{4}+r x_{5}=0 \\
2 x_{1}+7 x_{2} & -10 x_{3}-19 x_{4}+13 x_{5}=0
\end{aligned}\right.
$$

Question 4. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of $\mathbb{R}^{n}$, and let $A$ be an invertible $n \times n$ matrix. Consider the vectors $u_{1}=A v_{1}, u_{2}=A v_{2}, \ldots, u_{n}=A v_{n}$. Prove that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is also a basis of $\mathbb{R}^{n}$.

Question 5. Let $u$ and $v$ be arbitrary vectors in a vector space $V$. Recall that the norm or length of a vector is defined by $\|v\|=\sqrt{\langle v, v\rangle}$, where $\langle$,$\rangle is denotes an inner product on V$. Show that
(a)

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2} .
$$

(b)

$$
\|u+v\|^{2}-\|u-v\|^{2}=4\langle u, v\rangle .
$$

Question 6. Let $S=\left\{u_{1}, u_{2}\right\}$ and $T=\left\{v_{1}, v_{2}\right\}$ be linearly independent sets of vectors such that each $u_{i}$ in $S$ is orthogonal to every vector $v_{j}$ in $T$. Shot that $u_{1}, u_{2}, v_{1}, v_{2}$ are linearly independent.

Question 7. Let $W$ be a subspace of $\mathbb{R}^{n}$. Prove that $W^{\perp}$ is also a subspace. If the dimension of $W$ is $d$, what is the dimension of $W^{\perp}$ ?

Question 8. Let $W_{1}$ and $W_{2}$ be two subspaces of a vector space $V$. Show that $W_{1} \cap W_{2}$ is also a subspace of $V$.

Question 9. Find a basis for the span of the following set of vectors, and determine its dimension.
(a) The polynomials $2, x, 2 x-3,2 x^{3}+1$.
(b) The matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] .
$$

Question 10. Consider the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Is it a vector space? In case yes, what is its dimension?

Question 11. True or false? Justify your answer.
(a) Let $A$ be a square matrix. If the system $A \vec{x}=\vec{b}$ always has a solution for any vector $\vec{b}$, then the determinant of $A$ is zero.
(b) The set of all $3 \times 3$ invertible matrices is a subspace of the vector space of all $3 \times 3$ matrices.
(c) Let $A$ be a $n \times m$ matrix. Suppose that there exists a vector $\vec{b} \in \mathbb{R}^{n}$ such that $A \vec{x}=\vec{b}$ has no solution. Then the rank of $A$ is less than $n$.
(d) If $A$ is $n \times m$, and $B$ is $m \times \ell$, then the product $A B$ is well defined.
(e) Let $A$ be a $n \times m$ matrix and $\vec{b} \in \mathbb{R}^{n}$. The set of all vectors $\vec{x} \in \mathbb{R}^{m}$ that solve the system $A \vec{x}=\vec{b}$ is a subspace of $\mathbb{R}^{m}$ if, and only if, $\vec{b}=\overrightarrow{0}$. In particular, if $\vec{b} \neq \overrightarrow{0}$, then set of all vectors $\vec{x} \in \mathbb{R}^{m}$ that solve the system $A \vec{x}=\vec{b}$ is never a subspace of $\mathbb{R}^{m}$.

## Question 12.

(a) Know the precise definitions of linear combination, linear dependence, linear independence, basis, vector spaces, and subspaces.
(b) Given a matrix $A$, know how to find its column space, row space, and its kernel. Understand the relations between these spaces.
(c) Understand the examples posted on the course webpage.

URL: http://www.disconzi.net/Teaching/MAT196-Spring-15/MAT196-Spring-15.html

