VANDERBILT UNIVERSITY

MATH 2300 - MULTIVARIABLE CALCULUS
 Examples of section 12.4

Question 1. Show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} and that its direction is given by the right-hand rule. Assume that the vectors are non-zero and non-parallel.
Solution 1. Compute

$$
\begin{aligned}
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} & =\left\langle u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right\rangle \cdot\left\langle u_{1}, u_{2}, u_{3}\right\rangle \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) u_{1}+\left(u_{3} v_{1}-u_{1} v_{3}\right) u_{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right) u_{3} \\
& =\underline{u}_{2} v_{3} u_{1}-\underline{u}_{3} v_{2} u_{1}+\underline{u}_{3} v_{1} u_{2}-\underline{u}_{1} v_{3} v_{2}+\underline{u}_{1} v_{2} u_{3}-\underline{u}_{2} v_{1} u_{3} \\
& =0 .
\end{aligned}
$$

Similarly one shows that $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$.
For the second part, given \mathbf{u} and \mathbf{v}, consider their initial points at the same point in space. Define a Cartesian coordinate system such that the $x y$-plane contains \mathbf{u} and \mathbf{v} and such that the x-axis points along \mathbf{u}. Then $\mathbf{u}=\left\langle u_{1}, 0,0\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, 0\right\rangle$, and $\left.u_{1}\right\rangle 0$. Therefore

$$
\mathbf{u} \times \mathbf{v}=\left\langle 0,0, u_{1} v_{2}\right\rangle .
$$

From this we conclude that if $v_{2}>0$ then $\mathbf{u} \times \mathbf{v}$ points in the positive z-direction, and if $v_{2}<0$ then $\mathbf{u} \times \mathbf{v}$ points in the negative z-direction, agreeing with the right-hand rule.

